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Abstract
Stable Mgx Zn1−x O solid solutions (0.32 � x � 0.67) with a rock salt structure
were synthesized at temperatures higher than 700 ◦C and pressures above 5 GPa.
The lattice parameters and the Mg/Zn ratio were determined by the Rietveld
method from the powder x-ray diffraction data. Raman scattering studies
confirmed the cubic structure. Cathodoluminescence spectra have shown blue-
shifted luminescence as a result of the band gap widening of the solid solutions.

1. Introduction

Zinc oxide is a wide band gap semiconductor (3.37 eV) with large exciton binding energy
(60 meV) [1]. ZnO with MgO (Eg = 7.5 eV) solid solutions and Mgx Zn1−x O (MZO)-
based heterostructures have drawn global attention due to their potential application for room-
temperature lasers and diodes in the visible and ultraviolet regions. The practical realization
of a UV laser depends on the possibility to modulate the band gap while keeping the lattice
constant as close as possible to the active layer [2]. Mgx Zn1−x O solid solutions allow tailoring
of the direct band gap materials into extremely short wavelength regions. Numerous attempts
to synthesize continuous wide band gap solid solutions by alloying ZnO with MgO have been
reported [3–12].

At normal conditions the stable phase of ZnO has a hexagonal wurtzite structure while
MgO has a cubic periclase structure. According to the phase diagram [13–15], the MgO–ZnO
system is of eutectic type, characterized by an extensive solubility of ZnO in the periclase
(MgO-rich) phase and by a restricted solubility of MgO in a zincite, though the limits of the
solubility depend on the experimental conditions.
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The application of non-equilibrium synthesis routes such as pulsed laser deposi-
tion [2, 3, 5, 12], metal-organic vapour-phase epitaxy [10], molecular beam epitaxy [11],
or reactive electron beam evaporation [16] to the film growth as well as low-temperature de-
composition of solution-processed precursors [17, 18] leads to extended (as compared with
the MgO–ZnO equilibrium phase diagram) MZO solid solutions for both cubic and wurtzitic
MZO. The band gap energy of MZO varies from 3.4 to 4.4 eV for the wurtzite phase and
from 5 to 7.5 eV for the cubic phase. The higher values of the band gap for the cubic MZO
films as well as the strong dependence on the MgO composition are favourable for band gap
tailoring [9]. However, in many cases it has not been possible to fabricate stable single-phase
MZO alloys with a band gap between 4 and 6 eV.

The wurtzite structure of ZnO is dictated by a strong preference of Zn for tetrahedral
coordination. A reversible phase transformation from wurtzite (B4 phase) to rock salt (B1
phase) in ZnO at about 9 GPa was described earlier [19–25]. The phase boundary between the
B4 and B1 phases has been determined as a straight line, P (GPa) = 6.1−0.0012T (◦C), [23]
and as temperature independent at 6 GPa [24]. The pressure for the B4-to-B1 transition for
ball-milled ZnO increases up to 15.1 GPa [25], while heat treatment at 15 GPa and 280 ◦C of
the same ZnO yields a single-phase metastable rock salt zinc oxide after quenching [26].
67Zn-Mössbauer spectroscopy has revealed that at high pressures the wurtzite phase of
ZnO is highly unstable even against small nonaxial lattice distortions [27]. The optical
properties of rock salt and wurtzitic ZnO at high pressures were experimentally studied by
photoluminescence [28], Raman [29], and absorption [30] spectroscopies and they have also
been theoretically calculated [31]. The increase of band gap up to 3.5 eV for thin MZO films
(x < 0.13) was determined by optical absorption measurements under high pressure [32].

Application of a high pressure and high temperature (HPHT) technique to the MgO–
ZnO system should enable one to stabilize the rock salt phase, and to create MZO phases
with the cubic structure in the whole concentration range of solid solutions, and to modulate
the band gap of MZO alloys in the UV region. Here we report the HPHT synthesis and
optical properties of Mgx Zn1−x O solid solutions with rock salt structure over a wide range of
concentrations.

2. Experimental

0.5 M aqueous zinc nitrate (Aldrich) solution was precipitated by an excess amount of 2 M
ammonium bicarbonate solution. The precipitate was washed with distilled water and dried
at 320 ◦C in a vacuum furnace for 3–5 h. MgO was obtained by calcination of magnesium
hydroxide carbonate 4MgCO3Mg(OH)25H2O (Aldrich) at 1000 ◦C. Stoichiometric mixtures
of Zn-containing precursor and MgO in a Mg/Zn molar ratio corresponding to Mgx Zn1−x O
composition with x = 0.68, 0.5 and 0.32 were ball-milled in acetone using a planetary mill,
dried and afterwards annealed at 550 ◦C for 24 h. The morphologies and size distributions of
the ZnO and MgO particles of the precursors were examined by high resolution transmission
electron microscopy (HRTEM) using a JEM-4010 with accelerated voltage of 400 kV.

The high-pressure experiments at 5 GPa were carried out using a belt-type apparatus,while
experiments up to 10 GPa were performed in a cubic multianvil press. As-prepared ZnO–MgO
mixtures were uniaxially pressed into discs and placed into a high-pressure pyrophyllite cell
with a graphite heater. The temperature was measured using a Pt10% Rh–Pt thermocouple
without corrections for the pressure effect on the thermocouple emf. Sample pressure as a
function of hydraulic oil pressure was calibrated using the known phase transitions in bismuth
and barium, namely BiI−II (at 2.54 GPa), BaII−III (at 5.5 GPa) and BiVI−VII (at 7.7 GPa) at
room temperature.



Cubic Mgx Zn1−x O wide band gap solid solutions synthesized at high pressures 3379

Figure 1. Powder x-
ray diffraction patterns
of Mgx Zn1−x O sam-
ples quenched from high
pressures and temperatures
and annealed at ambient
pressure. Wide arrows
denote peaks of the rock
salt phase and narrow ones
correspond to the wurtzite
phase; asterisks denote
impurity.

Quenched samples were studied by powder x-ray diffraction (XRD) using a Rigaku
diffractometer (Cu Kα radiation). The diffraction experiment for structure refinement was
carried out using a Huber G670 image plate Guinier camera (Cu Kα1 radiation, curved Ge
monochromator). The GSAS program [33, 34] was used for structure refinement by the
Rietveld method. The occupation of the Zn/Mg positions was refined with fixed displacement
parameters. The atomic coordinates for Mg(OH)2 which appears occasionally as an impurity
were taken from [35], and were not refined.

Cathodoluminescence (CL) spectra of the samples were obtained using an XL 30S FEG
high-resolution scanning electron microscope (HRSEM) with a MonoCL system for CL
spectroscopy. Micro-Raman spectra were recorded in backscattering configuration on an XY
multichannel Jobin–Yvon spectrometer equipped with a CCD detector. The 514.5 nm line of
the coherent Spectra-Physics argon-ion laser was used as the excitation source. A Leitz UT40
optical microscope was used to focus the laser on the sample and to collect the scattered signal.

3. Results and discussion

Figure 1 shows the x-ray diffraction patterns of the Mgx Zn1−x O samples quenched from high
pressures and temperatures and annealed at ambient pressure. The peak positions in the XRD
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Figure 2. HRTEM image of the
Mg0.5Zn0.5O precursor. Inset: selected
area electron diffraction pattern.

patterns taken from the pristine samples (patterns 1, 5, 9, and 14) correspond to ZnO (space
group P63/mc (186); ICDD PDF2 card 36-1451) and MgO (space group Fm3m (225); ICDD
PDF2 card 45-0946). No other peaks have been detected. This shows that the precursors
contained only two pure oxides and did not form any solid solution because the temperature
of the preliminary annealing (550 ◦C) was not high enough to produce a reaction. MgO/ZnO
mixed nanoparticles prepared by solution techniques form the alloy with MZO near-band-edge
emission at higher temperatures [36]. The HRTEM image for the MgO(68%)–ZnO(32%)
precursor shows individual ZnO (denoted by arrows) and MgO particles (figure 2). They
are well crystalline and single phase, as can be seen in the selected area electron diffraction
pattern taken from a ZnO particle (inset in figure 2). The size of the particles is in the range
200–500 nm and 40–60 nm for MgO and ZnO, respectively.

The synthesis at 5 GPa and 400 ◦C did not result in the formation of a cubic phase, and the
line positions have changed only slightly (figure 1, patterns 2, 6, 10, 15). The MZO samples
quenched from 5 GPa and temperatures above 700 ◦C have a rock salt structure; lines of the
hexagonal phase completely disappear in figure 1, patterns 7, 11, 16, which is in accordance
with the phase diagram of ZnO [23, 24]. Earlier it has been reported that the pure B1 phase
of ZnO is unquenchable, and all quenched ZnO samples contain either pure B4 phase or a
mixture of B4 and B1 phases [19, 22, 23]. In our experiments at 900 ◦C and 5 GPa, wurtzitic
ZnO transforms into a mixture of B1 and B4 phases (figure 1, pattern 4) whereas at 700 ◦C
and 5 GPa, only hexagonal phase is detected (figure 1, pattern 3). MgO helps to stabilize the
transformation of ZnO at high pressures and plays the role of ‘substrate’, keeping the rock
salt structure after pressure release. One should note that XRD patterns 6, 10, 15, and 16
additionally exhibit weak peaks (I < 2%) of Mg(OH)2. The traces of magnesium hydroxide
are possible due to reaction of initial MgO with air moisture during sample preparation.

The main results of the structure refinement are listed in table 1. The experimental and
calculated XRD patterns and curve difference for the Mg0.68Zn0.32O sample quenched from
700 ◦C and 5 GPa (A) and 1320 ◦C and 9 GPa (B) are shown in figure 3. The refinement of the
pattern of sample 1 (figure 3(A)) revealed the formation of two solid solutions with different
compositions but with the same rock salt structure. Although the Mg0.5Zn0.5O sample (700 ◦C,
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Table 1. Results of the Rietveld refinement for the Mg1−x Znx O compositions.

P–T Formula RP,
Number Sample conditions a (Å) Mg:Zn weight V (Å3) RwP

1 Mg0.68Zn0.32Oa 5 GPa, 4.2440(2) 0.523(3):0.477(3) 238.993 76.44(1) 0.017,
700 ◦C 4.2291(2) 0.889(4):0.111(4) 181.719 75.64(1) 0.012

2 Mg0.5Zn0.5Ob 5 GPa, 4.2500(1) 0.493(1):0.507(1) 244.533 76.768(7) 0.025,
700 ◦C 0.017

3 Mg0.68Zn0.32O 9 GPa, 4.2356(6) 0.678(1):0.322(1) 214.128 75.991(1) 0.017,
1320 ◦C 0.011

a Phase 1:phase 2:Mg(OH)2 ratio (wt%) is 55.8(1):39.8(2):4.4(1).
b Phase 1:Mg(OH)2 ratio (wt%) is 97.7(1):2.3(1).

5 GPa) has been refined as a single-phase one, the scrutinizing of the peak shape at high angles
points to the possible existence of a second rock salt phase. The sample with the Mg0.68Zn0.32O
starting composition treated at higher pressures and temperatures (9 GPa, 1320 ◦C) is a single
phase, and has the rock salt structure. Due to the significant difference in scattering power of
Mg and Zn cations, the refined values of occupancy factor are reliable, and agree very well
with the tendency of variation of lattice constant of the rock salt-type solid solution caused by
replacement of Mg by Zn. The lattice parameters for samples 1–3 lie between the values of
aMgO = 4.2112 Å, and acZnO = 4.283 Å reported in the literature [22].

The results of Raman spectroscopy measurements are shown in figure 4. Spectrum B
taken from the ZnO sample quenched from 5 GPa and 400 ◦C shows Raman bands, typical for
the ZnO. The bands at 94 and 430 nm−1 may be ascribed to E2 (low) and E2 (high) modes. A1

bands at 373 and 576 nm−1 are also present in the spectrum but they are less pronounced [29].
Other bands may have originated from the multi-phonon processes [17]. Spectrum A taken
from Mg0.5Zn0.5O sample quenched from 5 GPa and 400 ◦C is similar to spectrum B. As follows
from the XRD data (figure 1, pattern 10), the pressure is not sufficient for the phase transition
while the temperature is not sufficient for the formation of solid solution; hence, we do not
observe any substantial shift of Raman bands for the ZnO phase in spectrum A in comparison
with spectrum B. In spectra C and D taken from the Mg0.5Zn0.5O sample (1320 ◦C, 9 GPa)
and Mg0.68Zn0.32O sample (1320 ◦C, 9 GPa), respectively, the E2 and A1 Raman bands have
disappeared, in accordance with the rule that first-order Raman scattering is forbidden for the
rock salt structure. However, in the case of Mgx Zn1−x O solid solutions translation symmetry
as well as inversion symmetry is destroyed by introducing Zn atoms at the substitutional lattice
site, and first-order Raman scattering is allowed [37]. Nevertheless the 102 and 112 nm−1 bands
remain and new broad features at 340 and 550 nm−1 appear. The latter can be explained by the
presence of structural defects, for instance, anion vacancies. XRD is not sufficiently sensitive
to study oxygen deficiency in the ZnO structure because of the small atomic scattering factor
of oxygen. An additional neutron diffraction study is necessary to confirm the suggestion.

Figure 5 shows CL spectra obtained from the samples quenched from high pressures
and high temperatures. The spectra do not exhibit the deep UV luminescence related with
pure MgO. The near band gap luminescence of the solid solution is blue-shifted as the MgO
concentration increases. Peaks centred at 3.55 and 3.74 eV are observed for the Mg0.5Zn0.5O
and Mg0.68Zn0.32O quenched from 1320 ◦C and 9 GPa, respectively. In addition, the spectra of
the quenched samples usually show a defect-related peak at about 2.2 eV. Despite the numerous
reports on the photoluminescence and cathodoluminescence of ZnO, the luminescent centre
responsible for this emission is not yet clearly identified. Several assumptions have been made.
According to Vanheusden [38] and Egelhaaf [39], the peak corresponds to a defect-related
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Figure 3. Refined XRD spectra of Mg0.68Zn0.32O samples 1 (top) and 3 (bottom). Peak positions
for two solid solutions are shown for sample 1 (part (A)) and peaks of Mg(OH)2 are marked by
asterisks. Enlargements demonstrate asymmetric broadening due to a presence of two cubic phases
for sample 1 and single cubic phase for sample 3 (part (B)).

luminescence (deep-level luminescence) due to the oxygen vacancies in the ZnO crystal lattice.
This defect-related luminescence is caused by radiative transitions between shallow donors
(oxygen vacancies) and deep acceptors (zinc vacancies). Earlier, Chen [9] explained the broad
transition in the experimental transmission spectra of cubic MgxZn1−x O by compositional non-
uniformity. This approach allowed the experimental results to be brought into better agreement
with theoretical ones. In our case, non-uniformity in x for Mgx Zn1−x O compositions could not
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Figure 4. Raman spectra of Mgx Zn1−x O
samples synthesized at 5 GPa and 400 ◦C
(A) x = 0.5; (B) x = 0 and 9 GPa and
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Figure 5. Cathodoluminescence spectra
of Mgx Zn1−x O samples synthesized
at 9 GPa and 1320 ◦C of different
compositions: triangles—x = 0.5;
circles x = 0.68 (dash–dot lines are
Lorentz multi-fit approximations).

explain such broadness in the spectra, since the structure refinement for the studied samples
has revealed the phase purity but the spectra are also broadened. One may suggest that non-
uniformity is not in the phase homogeneity but in the distribution of structural defects like
dislocations or oxygen vacancies, inside the phases. This explains why the values 3.55 and
3.74 eV obtained for our samples are considerably lower than the values determined for rock
salt films with the same Mg composition [16, 40].

4. Conclusion

As a result of the present study, stable cubic MgxZn1−x O solid solutions (0.33 < x < 0.68)

with continuous band gap up to 3.74 eV have been synthesized under high pressures and
temperatures. The lattice parameters and the Mg/Zn ratio were determined by the Rietveld
method from powder x-ray diffraction data. The optical properties of the quenched samples
were characterized by CL and Raman spectroscopy. The blue shift in the luminescence spectra
results from the band gap widening of the MZO solid solutions.
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